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Definitional Propositional

⊢ a1 = a2 : A ⊢ p : IdA(a1, a2)

Dependent type theory with propositional equality gives intensional
type theory (ITT).

t Equality reflection rule

Computation

Logic Topology

⊢ a1 : A ⊢ a2 : A
⊢ p : IdA(a1, a2)

⊢ a1 = a2 : A

Provably equal

Definitionally equal

Seems reasonable

Contractible

Singleton

Not true in general

Adding equality reflection gives extensional type theory (ETT).
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t Substitution vs. transport

Definitional Propositional

t = t ′ p : Id(t, t ′)

B(t) = B(t ′) B(t)
p∗−→ B(t ′)

▶ Changing terms between types indexed by definitionally
equal terms is proof-independent.

▶ Changing terms between types indexed by propositionally
equal terms depends on the proof of equality.
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⊢ p, p′ : IdA(a1, a2)

⊢ UIP(p, p′) : Id(p, p′)

Uniqueness of identity
proofs

Homotopically discrete
space

� Theorem (Hofmann 1995)

ETT is conservative over ITT+UIP.

⊢ p, p′ : IdA(a1, a2)

⊢ UIP(p, p′) : Id(p, p′)

⊢ p : IdA(a1, a2)

⊢ a1 = a2 : A

Limitation. Syntactic result did not account for extensions.
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` Definition

Two rings R and S are Morita equivalent iff ModR ≃ ModS .

(
Equivalence of
type theories

)
def
= Morita equivalence

def
=

(
Equivalence between
categories of models

)

t Need to Determine

1. What is a model of a type theory?

2. A suitable notion of equivalence between categories of
models?
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` Definition

A contextual category (C-system) structure on a category C
consists of

Grading Truncation Projection

obC =
∐
n∈N

obn C obn+1C
ft−→ obn C Γ.A

π−→ Γ

Notation. If ftA = Γ we write A = Γ.A.

Substitutions

∆.f ∗A Γ.A

∆ Γ

f .A

π
⌟

π

f
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⊢ A Type

(x1, x2 : A) ⊢ IdA(x1, x2) Type
Path object Provable equality

` Definition

A homotopy H : f ∼ g between f , g : Γ → ∆ ∈ C

is a factori-
sation

Γ ∆×∆

∆.∆.Id∆

(f ,g)

H

Homotopy equivalences w : Γ → ∆ are those maps admitting
left and right homotopy inverses.
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� Theorem (Kapulkin–Lumsdaine 2018)

The category CxlCatITT of models of ITT admits a cofibrantly-
generated left semi-model structure.

▶ Relative cell complexes are syntactic extensions.

▶ Weak equivalences are maps where types and terms lift
homotopically.

Weak type lifting Weak term lifting

D

C
F

A

FA A

≃

A B

FA FB

t

t

F t
∼
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� Theorem (Kapulkin–Lumsdaine 2018)

The category CxlCatITT of models of ITT admits a cofibrantly-
generated left semi-model structure.

▶ Relative cell complexes are syntactic extensions.

▶ Weak equivalences are maps where types and terms lift
homotopically.

` Definition

Two type theories T1,T2 extending ITT are Morita equivalent
if there is a Quillen equivalence CxlCatT1 CxlCatT2

⊥ .

Ò Example (Isaev 2020). The type theories ITT+Unit and
ITT+Contr are Morita equivalent.
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` Definition

Two type theories T1,T2 extending ITT are Morita equivalent if there

is a Quillen equivalence CxlCatT1 CxlCatT2

F
⊥
U

.

t Connection with Logical Power

Quillen equivalence by definition says that the adjunction unit C →
UFC at cofibrant models is a weak equivalence.

▶ If C is a model of T1 extended with base types, terms and
propositional equalities

▶ ...then there is an associated model FC of T2

▶ ...such that if we compile back to UFC as a model of T1

▶ ...then the expressible and provable statements in those two
models are correspond propositionally within type theory.
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� Theorem

The type theories ITT+UIP and ETT are Morita equivalent.

CxlCatITT+UIP CxlCatETT
⟨−⟩
⊥
|−|

t Proof.

All models of ETT also are also models of ITT + UIP,
so there is an inclusion |−| : CxlCatETT ↪→ CxlCatITT+UIP. By
cocompleteness, it has a left adjoint ⟨−⟩.

It suffices to check C → |⟨C⟩| is a weak equivalence when C ∈
CxlCatITT+UIP is a cell-complex of the generating left class. The
cells are “syntactic”: obtained by freely adding types and terms
but no definitional equalities. This makes it tractable to explicitly
construct ⟨C⟩ ∈ CxlCatETT. ♥
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so there is an inclusion |−| : CxlCatETT ↪→ CxlCatITT+UIP. By
cocompleteness, it has a left adjoint ⟨−⟩.

It suffices to check C → |⟨C⟩| is a weak equivalence when C ∈
CxlCatITT+UIP is a cell-complex of the generating left class. The
cells are “syntactic”:

obtained by freely adding types and terms
but no definitional equalities. This makes it tractable to explicitly
construct ⟨C⟩ ∈ CxlCatETT. ♥
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t A quotient construction

▶ To support equality reflection: must identify homotopic
maps.

▶ Cannot take Ho C.
▶ Ho C formally inverts homotopy equivalences.

▶ This collapses too much.

▶ Example. The map Bool → Bool swapping true and false
is a propositional isomorphism but is not the identity even
under equality reflection.

▶ Upshot. ⟨C⟩ is obtained from C by carefully choosing a
wide subcategory of homotopy equivalences to collapse.
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t Future directions

▶ Constructive proof of Hofmann’s result.

▶ Encompassing internal universes.

▶ Further instances of Morita equivalence.

Thank you!
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